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A note on explicitness
In this talk, we’ll study rigid matrices over C.
(things also make sense over positive characteristic, but let’s not worry about it.)
A necessary requirement for explicitness of a matrix is that its entries are integers or
rationals with small bit complexity.
We want a matrix that can’t be decomposed as low rank + sparse, even when “low
rank” and “sparse” contain arbitrary complex entries.
The first step is to verify that such matrices even exist (non explicitly).
Fortunately, this is true, even for {0,1} matrices. [Pudlák-Rödl, Hrubeš-Yehudayoff]



An Algebraic Geometric Approach to Matrix Rigidity

Cn×n

non-rigid matrices

What can we say about polynomials vanishing on non-rigid matrices?



Ideals and Varieties
A set V ⊆ CN is a variety if there are polynomials f1, . . . , ft ∈ C[x1, . . . , xN ] such that

V =
�

x ∈ CN : f1(x) = f2(x) = · · ·= ft(x) = 0
	

.

Each variety corresponds to an ideal

I(V ) = { f ∈ C[x1, . . . , xN ] : f vanishes on V} .
Each ideal I ⊆ C[x1, . . . , xN ] corresponds to a variety

V(I) = {x ∈ Cn : f (x) = 0 for all f ∈ I} .



Closure
Given an arbitrary set A⊆ CN , similarly let I(A) be the ideal of polynomials vanishing
on A.
The set V(I(A)) is called the Zariski closure of A, and denoted A.
In words: A is the set of common zeros of all polynomials vanishing on A.
A is the smallest variety containing A.
In algebraic complexity we study sets A corresponding to low complexity objects:
non-rigid matrices, low-rank tensors, polynomials with small circuits, ...
For such sets: A= Euclidean closure of A.



Equations for varieties
A⊆ CN is a set of low complexity algebraic objects (non-rigid matrices, low-rank
tensors, coefficient vectors of polynomials with small circuits)
A non-zero polynomial P ∈ I(A) is called an equation for A.
Such a P may serve as a “proof” that a point v ∈ CN is not in A:

P(v) ̸= 0 =⇒ v has high complexity

This is an algebraic proof for a lower bound.
Note that P(v) ̸= 0 actually implies v ̸∈ A.



Algebraic Natural Proofs
An algebraic proof is natural if P has low complexity [FSV17, GKSS17].
(Formally: P has degree poly(N) and can be computed by an arithmetic circuit of size
poly(N), where N= # vars of P )
Algebraic natural proofs exist for many limited models of computation. We don’t
know if they exist for strong classes of algebraic computation (for example, the class
of polynomial size arithmetic circuits).
Some people conjecture they don’t exist (“natural proofs barrier”)
This question of whether they exists is also, in some sense, the algebraic analog of
the boolean MCSP problem.
Are there natural proofs for rigidity?



Previous Results
Thm: [KLPS14, GHIL16] there’s an equation for rigidity of exponential degree.
More formally: whenever s < (n− r)2, there’s a nonzero n2-variate polynomial of
degree at most n4n2 which is zero on all matrices which are not (r, s)-rigid.
As a corollary, they construct a matrix with algebraic numbers which is optimally rigid
(just take n2 numbers which don’t have any low-degree polynomial relation).
Conjecture: [GHIL16] For some ϵ > 0, there’s an equation for matrices which are
not (ϵn, n1+ϵ)-rigid, of degree poly(n).
This talk: the conjecture is true.



New Degree Bounds
Thm: there’s an equation for matrices which are not (ϵn,ϵn2)-rigid, of degree at
most n3.
In fact, a poly(n) degree bound applies to a much larger class of matrices:
Thm: there’s an equation of degree poly(n) for matrices computed by a linear circuit
of size at most ϵn2.
Similar theorems for low-rank 3-dim tensors and other related models.
The proof is non-explicit and doesn’t produce an explicit equation P.
If there’s an explicit P, this is great news for circuit lower bounds.
If there isn’t an explicit P, this is also great news for circuit lower bounds.



Degree Bounds for Non-Rigid Matrices
Thm: there’s an equation of deg ≤ n3 for non-(ϵn,ϵn2)-rigid matrices.
Lemma: There’s a polynomial map Q : C4ϵn2 → Cn×n of degree n2 whose image
contains all matrices which are not (ϵn,ϵn2)-rigid.
Proof of Thm (assuming Lemma):

n2-variate polynomials
of degree ≤ n3

4ϵn2-variate polynomials
of degree ≤ n5

P P ◦Q7→
dim =
�n3+n2

n2

�
dim =
�n5+4ϵn2

4ϵn2

�
>

=⇒ ∃P0 ̸= 0 such that P0 ◦Q ≡ 0. So ∀ non-rigid M , P0(M) = P0(Q(v)) = 0.



Universal maps for non-rigid matrices
Lemma: There’s a polynomial map Q : C4ϵn2 → Cn×n of degree n2 whose image
contains all matrices which are not (ϵn,ϵn2)-rigid.
Part 1: Construct Q1 : C2ϵn2 → Cn×n of degree 2 whose image contains all matrices
of rank at most ϵn.
Part 2: Construct Q2 : C2ϵn2 → Cn×n of degree n2 whose image contains all
ϵn2-sparse matrices.
Then Q =Q1 +Q2.
Construction of Q1: Let U be an n× ϵn matrix of formal variables, and similarly V an
ϵn× n. Define Q1 as matrix multiplication UV .
i.e., Q1 : C2ϵn2 → Cn×n defined by (Q1)i, j =

∑ϵn
k=1 ui,kvk, j for i, j ∈ [n].



Universal map for sparse matrices
Part 2: Q2 : C2s→ Cn×n, deg ≤ n2, image contains all s-sparse matrices.
Turns out this is already done by [Shpilka-Volkovich]
Pick distinct αi, j ∈ C and let ℓi, j(z) be the Lagrange interpolation polynomials

ℓi, j(z) =

¨
1 if z = αi, j

0 if z = αi′, j′ for (i′, j′) ̸= (i, j)
=

∏
(i′, j′ )̸=(i, j)(z −αi′, j′)∏
(i′, j′ )̸=(i, j)(αi, j −αi′, j′)

i

j


∑s

k=1 ℓi, j(xk) · yk

vars: x1, . . . , xs, y1, . . . , ys
to put β1, . . .βs in (i1, j1), . . . , (is, js)
(and zero elsewhere):
set xk = αik , jk and yk = βk.



Universal Map for linear circuits
We construct a map Q : C2ϵn2 → Cn×n of degree ≤ n10 whose image contains all
matrices which can be computed by a linear circuit of size at most ϵn2.
(As before, this implies a polynomial degree bound for equations for this variety)
The idea is to use a universal circuit for size s: this is a “generic” circuit graph with
fresh variables as edge labels, that contains all size s circuits as subcircuits.
This results in a poly(s) blow-up in the circuit size, which is usually fine but not in this
case, since we must keep the number of variables significantly smaller than n2.
But a similar idea using the Shpilka-Volkovich map solves this problem.

Exactly the same idea also works for 3d tensors of small rank, small slice rank, etc.



Circuit Lower Bounds
Thm: Suppose PIT ∈ P. Then at least one of the following is true:

1. There’s a PSPACE algorithm which outputs a polynomial family not in VP.
2. There’s an efficient construction of (ϵn,ϵn2)-rigid matrices, with an NP oracle.

(compare with [Kabanets-Impagliazzo])
(also compare with recent constructions of somewhat-rigid matrices with an NP
oracle: [Alman-Chen, Bhangale-Harsha-Paradise-Tal])
Option 1 is true if the equations we found for non-rigid matrices are hard.
Option 2 is true if PIT ∈ P and these equations are easy.
(actually even if PIT ∈ NP)



Proof Sketch
The equations we find are solutions to a linear system of exponential size and we can
output a solution in PSPACE using standard small-space algorithm for linear algebra.
If this is a family of hard polynomials, we’re done.
If they are easy and PIT ∈ P:

1. guess a small circuit for the equation P

2. verify (deterministically) using PIT algorithm
3. find a matrix M such that P(M) ̸= 0

all can be done deterministically using an NP oracle
(there are some technical problems to solve)



Open Problems

• are there explicit equations?
• even if not, can the degree bound help in construction of rigid matrices?
• first step could be figuring out equations for very small instances and trying to
generalize

• further applications of “border rigidity?”

Thank You.


